Abstract
AbstractEukaryotic cells compartmentalize metabolic pathways in organelles to achieve optimal reaction conditions and avoid crosstalk with other factors in the cytosol. Increasingly, engineers are researching ways in which synthetic compartmentalization could be used to address challenges in metabolic engineering. Here, we identified that norcoclaurine synthase (NCS), the enzyme which catalyzes the first committed reaction in benzylisoquinoline alkaloid (BIA) biosynthesis, is toxic when expressed cytosolically inSaccharomyces cerevisiaeand, consequently, restricts (S)-reticuline production. We developed a compartmentalization strategy that alleviates NCS toxicity while promoting increased (S)-reticuline titer, achieved through efficient targeting of toxic NCS to the peroxisome while, crucially, taking advantage of the free flow of metabolite substrates and product across the peroxisome membrane. We identified that peroxisome protein capacity inS. cerevisiaebecomes a limiting factor for further improvement of BIA production and demonstrate that expression of engineered transcription factors can mimic the oleate response for larger peroxisomes, further increasing BIA titer without the requirement for peroxisome induction with fatty acids. This work specifically addresses the challenges associated with toxic NCS expression and, more broadly, highlights the potential for engineering organelles with desired characteristics for metabolic engineering.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献