Limited correspondence in visual representation between the human brain and convolutional neural networks

Author:

Xu YaodaORCID,Vaziri-Pashkam Maryam

Abstract

ABSTRACTConvolutional neural networks (CNNs) have achieved very high object categorization performance recently. It has increasingly become a common practice in human fMRI research to regard CNNs as working model of the human visual system. Here we reevaluate this approach by comparing fMRI responses from the human brain in three experiments with those from 14 different CNNs. Our visual stimuli included original and filtered versions of real-world object images and images of artificial objects. Replicating previous findings, we found a brain-CNN correspondence in a number of CNNs with lower and higher levels of visual representations in the human brain better resembling those of lower and higher CNN layers, respectively. Moreover, the lower layers of some CNNs could fully capture the representational structure of human early visual areas for both the original and filtered real-world object images. Despite these successes, no CNN examined could fully capture the representational structure of higher human visual processing areas. They also failed to capture that of artificial object images in all levels of visual processing. The latter is particularly troublesome, as decades of vision research has demonstrated that the same algorithms used in the processing of natural images would support the processing of artificial visual stimuli in the primate brain. Similar results were obtained when a CNN was trained with stylized object images that emphasized shape representation. CNNs likely represent visual information in fundamentally different ways from the human brain. Current CNNs thus may not serve as sound working models of the human visual system.Significance StatementRecent CNNs have achieved very high object categorization performance, with some even exceeding human performance. It has become common practice in recent neuroscience research to regard CNNs as working models of the human visual system. Here we evaluate this approach by comparing fMRI responses from the human brain with those from 14 different CNNs. Despite CNNs’ ability to successfully perform visual object categorization like the human visual system, they appear to represent visual information in fundamentally different ways from the human brain. Current CNNs thus may not serve as sound working models of the human visual system. Given the current dominating trend of incorporating CNN modeling in visual neuroscience research, our results question the validity of such an approach.

Publisher

Cold Spring Harbor Laboratory

Reference62 articles.

1. Deep convolutional networks do not classify based on global object shape;PLOS Comput Biol,2018

2. Ballester, P , de Araújo RM (2016) On the Performance of GoogLeNet and AlexNet Applied to Sketches. In AAAI (pp. 1124–1128).

3. Bashivan P , Kar K , DiCarlo JJ (2019) Neural population control via deep image synthesis. Science 364:eaav9436.

4. Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing;J Roy Stat Soc B Met,1995

5. Understanding location- and feature-based processing along the human intraparietal sulcus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3