Overexpression of the chloroplastic 2-oxoglutarate/malate transporter in rice disturbs carbon and nitrogen homeostasis

Author:

Zamani-Nour Shirin,Lin Hsiang-Chun,Walker Berkley J.ORCID,Mettler-Altmann TabeaORCID,Khoshravesh Roxana,Karki Shanta,Bagunu Efren,Sage Tammy L.ORCID,Quick W. Paul,Weber Andreas P.M.ORCID

Abstract

AbstractThe chloroplastic oxaloacetate/malate transporter (OMT1 or DiT1) takes part in the malate valve that protects chloroplasts from excessive redox poise through export of malate and import of oxaloacetate (OAA). Together with the glutamate/malate transporter (DCT1 or DiT2), it connects carbon with nitrogen assimilation, by providing α-ketoglutarate for the GS/GOGAT reaction and exporting glutamate to the cytoplasm. OMT1 further plays a prominent role in C4 photosynthesis. OAA resulting from PEP-carboxylation is imported into the chloroplast, reduced to malate by plastidic NADP-MDH, and then exported for transport to bundle sheath cells. Both transport steps are catalyzed by OMT1, at the rate of net carbon assimilation. Therefore, to engineer C4 photosynthesis into C3 crops, OMT1 must be expressed in high amounts on top of core C4 metabolic enzymes. We report here high-level expression of ZmOMT1 from maize in rice (Oryza sativa ssp. indica IR64). Increased activity of the transporter in transgenic rice was confirmed by reconstitution of transporter activity into proteoliposomes. Unexpectedly, over-expression of ZmOMT1 in rice negatively affected growth, CO2 assimilation rate, total free amino acid contents, TCA cycle metabolites, as well as sucrose and starch contents. Accumulation of high amounts of aspartate and the impaired growth phenotype of OMT1 rice lines could be suppressed by simultaneous over-expression of ZmDiT2. Implications for engineering C4-rice are discussed.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3