Rare variants in dynein heavy chain genes in two individuals with situs inversus and developmental dyslexia

Author:

Bieder AndreaORCID,Einarsdottir ElisabetORCID,Matsson HansORCID,Nilsson Harriet E.ORCID,Eisfeldt JesperORCID,Dragomir AncaORCID,Paucar MartinORCID,Granberg TobiasORCID,Li Tie-QiangORCID,Lindstrand AnnaORCID,Kere JuhaORCID,Tapia-Páez IsabelORCID

Abstract

ABSTRACTBackgroundDevelopmental dyslexia (DD) is a neurodevelopmental learning disorder with high heritability. A number of candidate susceptibility genes have been identified, some of which are linked to the function of the cilium, an organelle regulating left-right asymmetry development in the embryo. Furthermore, it has been suggested that disrupted left-right asymmetry of the brain may play a role in neurodevelopmental disorders such as DD.MethodsHere, we studied two individuals with co-occurring situs inversus (SI) and DD using whole genome sequencing to identify single nucleotide variants or copy number variations of importance for DD and SI.ResultsIndividual 1 had primary ciliary dyskinesia (PCD), a rare, autosomal recessive disorder with oto-sino-pulmonary phenotype and SI. We identified two rare nonsynonymous variants in the dynein axonemal heavy chain 5 gene (DNAH5): c.7502G>C;p.(R2501P), a previously reported variant predicted to be damaging and c.12043T>G;p.(Y4015D), a novel variant predicted to be damaging. Ultrastructural analysis of the cilia revealed a lack of outer dynein arms and normal inner dynein arms. MRI of the brain revealed no significant abnormalities. Individual 2 had non-syndromic SI and DD. In individual 2, one rare variant (c.9110A>G;p.(H3037R)) in the dynein axonemal heavy chain 11 gene (DNAH11), coding for another component of the outer dynein arm, was identified.ConclusionsWe identified the likely genetic cause of SI and PCD in one individual, and a possibly significant heterozygosity in the other, both involving dynein genes. Given the present evidence, it is unclear if the identified variants also predispose to DD, but further studies into the association are warranted.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3