Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada

Author:

Coulibali Zonlehoua,Cambouris Athyna Nancy,Parent Serge-ÉtienneORCID

Abstract

1AbstractStatistical modeling is commonly used to relate the performance of potato (Solanum tuberosumL.) to fertilizer requirements. Prescribing optimal nutrient doses is challenging because of the involvement of many variables including weather, soils, land management, genotypes, and severity of pests and diseases. Where sufficient data are available, machine learning algorithms can be used to predict crop performance. The objective of this study was to predict tuber yield and quality (size and specific gravity) as impacted by nitrogen, phosphorus and potassium fertilization as well as weather, soils and land management variables. We exploited a data set of 273 field experiments conducted from 1979 to 2017 in Quebec (Canada). We developed, evaluated and compared predictions from a hierarchical Mitscherlich model,k-nearest neighbors, random forest, neuronal networks and Gaussian processes. Machine learning models returned R2values of 0.49–0.59 for tuber marketable yield prediction, which were higher than the Mitscherlich model R2(0.37). The models were more likely to predict medium-size tubers (R2= 0.60–0.69) and tuber specific gravity (R2= 0.58–0.67) than large-size tubers (R2= 0.55–0.64) and marketable yield. Response surfaces from the Mitscherlich model, neural networks and Gaussian processes returned smooth responses that agreed more with actual evidence than discontinuous curves derived fromk-nearest neighbors and random forest models. When marginalized to obtain optimal dosages from dose-response surfaces given constant weather, soil and land management conditions, some disagreements occurred between models. Due to their built-in ability to develop recommendations within a probabilistic risk-assessment framework, Gaussian processes stood out as the most promising algorithm to support decisions that minimize economic or agronomic risks.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3