Insights into the Polyhexamethylene Biguanide (PHMB) Mechanism of Action on Bacterial Membrane and DNA: A Molecular Dynamics Study

Author:

Sowlati-Hashjin ShahinORCID,Carbone PaolaORCID,Karttunen MikkoORCID

Abstract

AbstractPolyhexamethylene biguanide (PHMB) is a cationic polymer with antimicrobial and antiviral properties. It has been commonly accepted that the antimicrobial activity is due the ability of PHMB to perforate the bacterial phospholipid membrane leading ultimately to its death. In this study we show by the means of atomistic molecular dynamics (MD) simulations that while the PHMB molecules attach to the surface of the phospholipid bilayer and partially penetrate it, they do not cause any pore formation at least within the microsecond simulation times. The polymers initially adsorb onto the membrane surface via the favourable electrostatic interactions between the phospholipid headgroups and the biguanide groups, and then partially penetrate the membrane slightly disrupting its structure. This, however, does not lead to the formation of any pores. The microsecond-scale simulations reveal that it is unlikely for PHMB to spontaneously pass through the phospholipid membrane. Our findings suggest that PHMB translocation across the bilayer may take place through binding to the phospholipids. Once inside the cell, the polymer can effectively ‘bind’ to DNA through extensive interactions with DNA phosphate backbone, which can potentially block the DNA replication process or activate DNA repair pathways.TOC Graphic

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3