Fidgetin-like 2 is a novel negative regulator of axonal growth and can be targeted to promote functional nerve regeneration after injury

Author:

Baker Lisa,Tar Moses,Villegas Guillermo,Charafeddine Rabab,Kramer Adam,Vafaeva Olga,Nacharaju Parimala,Friedman Joel,Davies Kelvin P.,Sharp David J.

Abstract

AbstractThe microtubule (MT) cytoskeleton plays a critical role in axon growth and guidance. Here, we identify the MT severing enzyme fidgetin-like 2 (FL2) as a negative regulator of axonal regeneration and a potential therapeutic target for promoting neural regeneration after injury. Genetic knockout of FL2 in cultured adult dorsal root ganglion (DRG) neurons resulted in longer axons and attenuated growth cone retraction in response to inhibitory molecules. Given the axonal growth-promoting effects of FL2 depletion in vitro, we tested whether the enzyme could be targeted to promote regeneration in a rodent model of peripheral nerve injury. In the model used in our experiments, the cavernous nerves (CN) are either crushed or transected, mimicking nerve injury caused by radical prostatectomy (RP). As with patients, CN injury results in erectile dysfunction, for which there are presently poor treatment options. At the time of injury, FL2-siRNA or control-siRNA was applied to the site using nanoparticles or chondroitin sulfate microgels as delivery agents. Treatment significantly enhanced functional nerve recovery, as determined by cavernosometry (measurements of corporal blood pressure in response to electrostimulation of the nerve). Remarkably, following complete bilateral nerve transection, visible and functional nerve regeneration was observed in 7 out of 8 animals treated with FL2-siRNA. In contrast, no control-siRNA treated animals showed regeneration. These observations suggest a novel therapeutic approach to treat peripheral nerve injury, particularly injuries resulting from surgical procedures such as RP, where treatments depleting FL2 could be applied locally at the time of injury.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3