In-cell destabilization of a homo-dimeric protein complex detected by DEER spectroscopy

Author:

Yang Yin,Chen Shen-Na,Yang Feng,Li Xia-Yan,Feintuch Akiva,Su Xun-Cheng,Goldfarb Daniella

Abstract

AbstractThe complexity of the cellular medium can affect proteins’ properties and therefore in-cell characterization of proteins is essential. We explored the stability and conformation of BIR1, the first baculoviral IAP repeat domain of X-chromosome-linked inhibitor of apoptosis (XIAP), as a model for a homo-dimer protein in human HeLa cells. We employed double electron-electron resonance (DEER) spectroscopy and labeling with redox stable and rigid Gd3+ spin labels at three protein residues, C12 (flexible region), E22C and N28C (part of helical residues 26–31) in the N-terminal region. In contrast to predictions by excluded volume crowding theory, the dimer-monomer dissociation constant KD was markedly higher in cells than in solution and dilute cell lysate. As expected, this increase was recapitulated under conditions of high salt concentrations given that a conserved salt bridge at the dimer interface is critically required for association. Unexpectedly, however, also the addition of a crowding agent such as Ficoll destabilized the dimer, suggesting that Ficoll forms specific interactions with the monomeric protein. Changes in DEER distance distributions were observed for the E22C site, which displayed reduced conformational freedom in cells. Although overall DEER behaviors at E22C and N28C were compatible with a predicted compaction of disordered protein regions by excluded volume effects, we were unable to reproduce E22C properties in artificially crowded solutions. These results highlight the importance of in-cell DEER measurements to appreciate the complexities of cellular in vivo effects on protein structures and functions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Protein–Peptide Binding Energetics under Crowded Conditions;The Journal of Physical Chemistry B;2020-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3