Understanding COVID-19 spreading through simulation modeling and scenarios comparison: preliminary results

Author:

Bordehore CesarORCID,Herrador ZaidaORCID,Fonfría Eva S.,Navarro MiriamORCID

Abstract

ABSTRACTSince late 2019 the world is facing the rapid spreading of a novel viral disease (SARS-CoV-2) provoked by the coronavirus 2 infection (COVID-19), declared pandemic last 12 March 2020. As of 27 March 2020, there were more than 500,000 confirmed cases and 23,335 deaths worldwide. In those places with a rapid growth in numbers of sick people in need of hospitalization and intensive care, this demand has over-saturate the medical facilities and, in turn, rise the mortality rate.In the absence of a vaccine, classical epidemiological measures such as testing, quarantine and physical distancing are ways to reduce the growing speed of new infections. Thus, these measures should be a priority for all governments in order to minimize the morbidity and mortality associated to this disease.System dynamics is widely used in many fields of the biological sciences to study and explain changing systems. The system dynamics approach can help us understand the rapid spread of an infectious disease such as COVID-19 and also generate scenarios to test the effect of different control measures.The aim of this study is to provide an open model (using STELLA® from Iseesystems) that can be customized to any area/region and by any user, allowing them to evaluate the different behavior of the COVID-19 dynamics under different scenarios. Thus, our intention is not to generate a model to accurately predict the evolution of the disease nor to supplant others more robust -official and non-official-from governments and renowned institutions. We believe that scenarios comparison can be an effective tool to convince the society of the need of a colossal and unprecedented effort to reduce new infections and ultimately, fatalities.

Publisher

Cold Spring Harbor Laboratory

Reference16 articles.

1. Aleta A , Moreno Y. 2020. Evaluation of the potential incidence of COVID-19 and effectiveness of contention measures in Spain: a data-driven approach. medRxiv preprint doi: https://doi.org/10.1101/2020.03.01.20029801.

2. Global hotspots and correlates of emerging zoonotic diseases

3. Arenas A , Cota W , Gómez-Gardenes J , Gómez S , Granell C , Matamalas JT , Soriano D , Steinegger B. 2020. A mathematical model for the spatiotemporal epidemic spreading of COVID19. medRxiv preprint doi: https://doi.org/10.1101/2020.03.21.20040022.

4. Burgos-Simón C , Cortés-López JC , López-Navarro E , Martínez-Rodríguez D. Martínez-Rodríguez D , Martínez-Rodríguez P , San Julián-Garcés and Villanueva Micó RJ. 2020. Modelización epidemiológica del COVID-19. Technical Report. 19/03/2020 Equipo de investigación MUNQU del Instituto Universitario de Matemática Multidisciplinar de la Universitat Politècnica de València. Available at: https://covid19.webs.upv.es/

5. Ferguson NM , Laydon D , Nedjati-Gilani G et al 2020. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand. Imperial College London. Technical report. Available at: https://sciencebusiness.net/sites/default/files/inline-files/Imperial-College-COVID19-NPI-modeling-16-03-2020.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3