COVID-19 Epidemic in Switzerland: Growth Prediction and Containment Strategy Using Artificial Intelligence and Big Data

Author:

Marini Marcello,Chokani Ndaona,Abhari Reza S.

Abstract

AbstractUsing a previously developed agent-based artificial intelligence simulation platform (EnerPol) coupled with ‘Big Data,’ the evolution and containment of COVID-19 in Switzerland is examined. The EnerPol platform has been used in a broad range of case studies in different sectors in all of Europe, USA, Japan, South Korea and sub Saharan Africa over the last 10 years. In the present study, the entire Swiss population (8.57 million people), including cross-border commuters, and the entire Swiss public and private transport network that is simulated to assess transmission of the COVID-19 virus. The individual contacts within the population, and possible transmission pathways, are established from a simulation of daily activities that are calibrated with micro-census data. Various governmental interventions with regards to closures and social distancing are also implemented. The epidemiology of the COVID-19 virus is based on publicly available statistical data and adapted to Swiss demographics. The predictions estimate that between 22 February and 11 April 2020, there will be 720 deaths from 83’300 COVID-19 cases, and 73’300 will have recovered; our preliminary variability in these estimates is about 21% over the aforementioned period. In the absence of governmental intervention, 42.7% of the Swiss population would have been infected by 25 April 2020 compared to our prediction of a 1% infection over this time period, saving thousands of lives. It is argued that future scenarios regarding relaxation of the lockdown should be carefully simulated, as by 19 April 2020, there will still remain a substantial number of infected individuals, who could retrigger a second spread of COVID-19. Through the use of a digital tool, such as Enerpol, to evaluate in a data-driven manner the impacts of various policy scenarios, the most effective measures to mitigate a spread of COVID-19 can be devised while we await the deployment of large-scale vaccination for the population globally. By tailoring the spatio-temporal characteristics of the spread to match the capacity of local healthcare facilities, appropriate logistic needs can be determined, in order not to overwhelm the health care services across the country.

Publisher

Cold Spring Harbor Laboratory

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3