A long noncoding RNA, LOC157273, is the effector transcript at the chromosome 8p23.1-PPP1R3B metabolic traits and type 2 diabetes risk locus

Author:

Manning Alisa K.,Goustin Anton Scott,Kleinbrink Erica L.,Thepsuwan Pattaraporn,Cai Juan,Ju Donghong,Leong Aaron,Udler Miriam S.,Brown James Bentley,Goodarzi Mark O.,Rotter Jerome I.,Sladek Robert,Meigs James B.ORCID,Lipovich LeonardORCID

Abstract

AbstractAimsCausal transcripts at genomic loci associated with type 2 diabetes are mostly unknown. The chr8p23.1 variant rs4841132, associated with an insulin resistant diabetes risk phenotype, lies in the second exon of a long non-coding RNA (lncRNA) gene, LOC157273, located 175 kilobases from PPP1R3B, which encodes a key protein regulating insulin-mediated hepatic glycogen storage in humans. We hypothesized that LOC157273 regulates expression of PPP1R3B in human hepatocytes.MethodsWe tested our hypothesis using Stellaris fluorescent in-situ hybridization to assess subcellular localization of LOC157273; siRNA knockdown of LOC157273, followed by RT-PCR to quantify LOC157273 and PPP1R3B expression; RNA-seq to quantify the whole-transcriptome gene expression response to LOC157273 knockdown and an insulin-stimulated assay to measure hepatocyte glycogen deposition before and after knockdown.ResultsWe found that siRNA knockdown decreased LOC157273 transcript levels by approximately 80%, increased PPP1R3B mRNA levels by 1.7-fold and increased glycogen deposition by >50% in primary human hepatocytes. An A/G heterozygous carrier (vs. three G/G carriers) had reduced LOC157273 abundance due to reduced transcription of the A allele and increased PPP1R3B expression and glycogen deposition.ConclusionWe show that the lncRNA LOC157273 is a negative regulator of PPP1R3B expression and glycogen deposition in human hepatocytes and the causal transcript at an insulin resistant type 2 diabetes risk locus.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3