Orchard layout and plant traits influence fruit yield more strongly than pollinator behaviour and density in a dioecious crop

Author:

Peace AngelaORCID,Pattermore David,Broussard Melissa,Fonseka Dilini,Tomer Nathan,Bosque-Pérez Nilsa A.,Crowder David,Shaw Allison K.,Jesson Linley,Howlett Brad,Jochym MateuszORCID,Li Jing

Abstract

AbstractMutualistic plant-pollinator interactions are critical for the functioning of both non-managed and agricultural systems. Mathematical models of plant-pollinator interactions can help understand key determinants in pollination success. However, most previous models have not addressed pollinator behavior and plant biology combined. Information generated from such a model can inform optimal design of crop orchards and effective utilization of managed pollinators like honey bees, and help generate hypotheses about the effects of management practices and cultivar selection. We expect that honey bee density per flower and male to female flower ratio will influence fruit yield. To test the relative importance of these effects, both singly and simultaneously, we utilized a delay differential equation model combined with Latin hypercube sampling for sensitivity analysis. Empirical data obtained from historical records and collected in kiwifruit orchards in New Zealand were used to parameterize the model. We found that, at realistic bee densities, the optimal orchard had 65-75% female flowers, and the most benefit was gained from the first 6-8 bees/1000 flowers, with diminishing returns thereafter. While bee density significantly impacted fruit production, plant-based parameters-flower density and male:female flower ratio-were the most influential. The predictive model provides strategies for improving crop management.

Publisher

Cold Spring Harbor Laboratory

Reference40 articles.

1. How many flowering plants are pollinated by animals?

2. Importance of pollinators in changing landscapes for world crops

3. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline

4. Goodwin M . Pollination of Crops in Australia and New Zealand. Ruakura, New Zealand: Rural Industries Research and Development Corporation; 2012.

5. Phenology determines the robustness of plant-pollinator networks;Scientific reports,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3