Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinasterAit., Pinaceae)

Author:

de Miguel MarinaORCID,Rodríguez-Quilón IsabelORCID,Heuertz MyriamORCID,Hurel AgatheORCID,Grivet DelphineORCID,Jaramillo-Correa Juan-PabloORCID,Vendramin Giovanni G.,Plomion ChristopheORCID,Majada JuanORCID,Alía RicardoORCID,Eckert Andrew J.ORCID,González-Martínez Santiago C.ORCID

Abstract

AbstractA decade of association studies in multiple organisms suggests that most complex traits are polygenic; that is, they have a genetic architecture determined by numerous loci distributed across the genome, each with small effect-size. Thus, determining the degree of polygenicity and its variation across traits, environments and years is useful to understand the genetic basis of phenotypic variation. In this study, we applied multilocus approaches to estimate the degree of polygenicity of fitness-related traits in a long-lived plant (Pinus pinasterAit., maritime pine) and to analyze how polygenicity changes across environments and years. To do so, we evaluated five categories of fitness-related traits (survival, height, phenology-related, functional, and biotic-stress response traits) in a clonal common garden network, planted in contrasted environments (over 12,500 trees). First, most of the analyzed traits showed evidence of local adaptation based onQST-FSTcomparisons. Second, we observed a remarkably stable degree of polygenicity, averaging 6% (range of 0-27%), across traits, environments and years. As previously suggested for humans, some of these traits showed also evidence of negative selection, which could explain, at least partially, the high degree of polygenicity. The observed genetic architecture of fitness-related traits in maritime pine supports the polygenic adaptation model. Because polygenic adaptation can occur rapidly, our study suggests that current predictions on the capacity of natural forest tree populations to adapt to new environments should be revised, which is of special relevance in the current context of climate change.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3