Outer membrane-deprived cyanobacteria liberate periplasmic and thylakoid luminal components that support the growth of heterotrophs

Author:

Kojima SeijiORCID,Okumura Yasuaki

Abstract

ABSTRACTChloroplasts originate from endosymbiosis of a cyanobacterium within a heterotrophic host cell. Establishing endosymbiosis requires the translocation across its envelope of photosynthetic products generated inside the once free-living cyanobacterium to be exploited by host metabolism. However, the nature of this translocation event is unknown. We previously found that most cyanobacterial outer membrane components were eliminated during the primitive stage of chloroplast evolution, suggesting the importance of evolutionary changes of the outer membrane. Here, we removed the outer membrane from Synechocystis sp. PCC 6803 by disrupting the physical interaction with peptidoglycan, and characterized the effects on cell function. Outer membrane-deprived cells liberated diverse substances into the environment without significantly compromising photoautotrophic growth. The amount of liberated proteins increased to ~0.35 g/L within five days of culture. Proteomic analysis showed that most liberated proteins were periplasmic and thylakoid luminal components. Connectivity between the thylakoid lumen-extracellular space was confirmed by findings that an exogenous hydrophilic oxidant was reduced by photosynthetic electron transport chain on the thylakoid membrane. Metabolomic analysis detected the release of nucleotide-related metabolites at concentrations around 1 μM. The liberated materials supported the proliferation of heterotrophic bacteria. These findings show that breaching the outer membrane, without any manipulations to the cytoplasmic membrane, converts a cyanobacterium to a chloroplast-like organism that conducts photosynthesis and releases its biogenic materials. This conversion not only represents a potential explanation why the outer membrane markedly changed during the earliest stage of chloroplast evolution, but also provides the opportunity to harness cyanobacterial photosynthesis for biomanufacturing processes.SIGNIFICANCE STATEMENTAlthough it is well accepted that chloroplasts stem from endosymbiosis of a cyanobacterium within a heterotrophic host cell, the issue of how photosynthetic products generated inside a formerly free-living cyanobacterium are translocated across its envelope and exploited by host metabolism has been little addressed. Here we show that breaching the cyanobacterial outer membrane barrier converts a cyanobacterium to a chloroplast-like organism that conducts photosynthesis and releases its diverse biogenic materials into its external environment, which sustains the growth of heterotrophic organisms. This conversion represents a possible example of metabolic exploitation of cyanobacterial photosynthesis. Further, this “quasi-chloroplast” provides a potential opportunity for industrial application such as producing feedstock for biomanufacturing processes that harnesses heterotrophic bacteria.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3