A neural m6A/YTHDF pathway is required for learning and memory in Drosophila

Author:

Kan Lijuan,Ott Stanislav,Joseph Brian,Park Eun Sil,Dai Crystal,Kleiner Ralph,Claridge-Chang Adam,Lai Eric C.ORCID

Abstract

AbstractThe roles of epitranscriptomic modifications in mRNA regulation have recently received substantial attention, with appreciation growing for their phenotypically selective impacts within the animal. We adopted Drosophila melanogaster as a model system to study m6A, the most abundant internal modification of mRNA. Here, we report proteomic and functional analyses of fly m6A-binding proteins, confirming nuclear (YTHDC) and cytoplasmic (YTHDF) YTH domain proteins as the major m6A binders. Since all core m6A pathway mutants are viable, we assessed in vivo requirements of the m6A pathway in cognitive processes. Assays of short term memory revealed an age-dependent requirement of m6A writers working via YTHDF, but not YTHDC, comprising the first phenotypes assigned to Drosophila mutants of the cytoplasmic m6A reader. These factors promote memory via neural-autonomous activities, and are required in the mushroom body, the center for associative learning. To inform their basis, we mapped m6A from wild-type and mettl3 null mutant heads, allowing robust discrimination of Mettl3-dependent m6A sites. In contrast to mammalian m6A, which is predominant in 3’ UTRs, Drosophila m6A is highly enriched in 5’ UTRs and occurs in an adenosine-rich context. Genomic analyses demonstrate that Drosophila m6A does not directionally affect RNA stability, but is preferentially deposited on genes with low translational efficiency. However, functional tests indicate a role for m6A in translational activation, since we observe reduced nascent protein synthesis in mettl3-KO cells. Finally, we show that ectopic YTHDF can increase m6A target reporter output in an m6A-binding dependent manner, and that this activity is required for in vivo neural function of YTHDF in memory. Altogether, we provide the first tissue-specific m6A maps in this model organism and reveal selective behavioral and translational defects for m6A/YTHDF mutants.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3