An easily adopted murine model of distal pancreatectomy for investigating immunotherapy efficacy in resectable pancreatic adenocarcinoma

Author:

Baxter Katherine E,de Souza Christiano Tanese,Tai Lee-HwaORCID,Yaghini Pasha,Daneshmand Manijeh,Bell John C,Lichty Brian D,Kennedy Michael AORCID,Auer Rebecca CORCID

Abstract

AbstractBackgroundAlthough surgery provides the greatest therapeutic benefit to eligible pancreatic ductal adenocarcinoma (PDAC) patients it does not significantly improve survival for the majority of patients. Unfortunately our understanding of the therapeutic benefit of combining surgery with different treatment modalities including promising immunotherapeutics is limited by the current lack of easily adopted surgical models. The purpose of this study was to develop a surgically resectable model of PDAC in immunocompetent mice for use in preclinical investigations.Materials and MethodsSurgically resectable orthotopic tumors were generated by injecting Pan02 cells into the tail of the pancreas. Fifteen days post implantation the primary tumors and tail of the pancreas were resected by laparotomy while preserving the spleen. Splenic function, tumor growth, immune phenotyping and survival were assessed following surgical resection of the primary tumor mass.ResultsAs expected orthotopic tumor implants recapitulated many of the major histological hallmarks of PDAC including disrupted lobular structure and vascular invasion. Preservation of splenic immune cell viability and function was not associated with improved survival following surgery alone. However, pre-operative vaccination with GVAX was associated with improved survival which was not impacted by surgery.ConclusionThis represents the first murine model of surgically resectable murine model of PDAC which recapitulates known pathological hallmarks of human disease in an immune competent model while allowing spleen preservation. This relatively simple and easily adopted approach provides an ideal platform to examine the efficacy of potential immunotherapy combinations for PDAC surgery patients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3