Transcriptional mediators of treatment resistance in lethal prostate cancer

Author:

He Meng Xiao,Cuoco Michael S.,Crowdis Jett,Bosma-Moody Alice,Zhang Zhenwei,Bi Kevin,Kanodia Abhay,Su Mei-Ju,Rodman Christopher,DelloStritto Laura,Shah Parin,Burke Kelly P.,Izar Benjamin,Bakouny Ziad,Tewari Alok K.,Liu David,Camp Sabrina Y.,Vokes Natalie I.,Park Jihye,Vigneau Sébastien,Fong Lawrence,Rozenblatt-Rosen Orit,Regev Aviv,Rotem Asaf,Taplin Mary-Ellen,Van Allen Eliezer M.ORCID

Abstract

ABSTRACTMetastatic castration resistant prostate cancer (mCRPC) is primarily treated with therapies that prevent transcriptional activity of the androgen receptor (AR), cause DNA damage, or prevent cell division. Clinical resistance to these therapies, including second-generation androgen-targeting compounds such as enzalutamide and abiraterone, is nearly universal. Other treatment modalities, including immune checkpoint inhibitors, have provided minimal benefit except in rare subsets of patients1,2. Both tumour intrinsic and extrinsic cellular programs contributing to therapeutic resistance remain areas of active investigation. Here we use full-length single-cell RNA-sequencing (scRNA-seq) to identify the transcriptional states of cancer and immune cells in the mCRPC microenvironment. Within cancer cells, we identified transcriptional patterns that mediate a significant proportion of inherited risk for prostate cancer, extensive heterogeneity inARsplicing within and between tumours, and vastly divergent regulatory programs between adenocarcinoma and small cell carcinoma. Moreover, upregulation of TGF-β signalling and epithelial-mesenchymal transition (EMT) were both associated with resistance to enzalutamide. We found that some lymph node metastases, but no bone metastases, were heavily infiltrated by dysfunctional CD8+T cells, including cells undergoing dramatic clonal expansion during enzalutamide treatment. Our findings suggest avenues for rational therapeutic approaches targeting both tumour-intrinsic and immunological pathways to combat resistance to current treatment options.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3