In vitro effects on cellular shaping, contratility, cytoskeletal organization and mitochondrial activity in HL1 cells after different sounds stimulation. A qualitative pilot study and a theoretical physical model

Author:

Lin Carlo DalORCID,Radu Claudia Maria,Vitiello Giuseppe,Romano Paola,Polcari Albino,Iliceto Sabino,Simioni Paolo,Tona Francesco

Abstract

AbstractConvincing evidence has documented that mechanical vibrations profoundly affect the behaviour of different cell types and even the functions of different organs. Pressure waves such as those of sound could affect cytoskeletal molecules with coherent changes in their spatial organization and are conveyed to cellular nucleus via mechanotransduction. HL1 cells were grown and exposed to different sounds. Subsequently, cells were stained for phalloidin, beta-actin, alpha-tubulin, alpha-actinin-1 and MitoTracker® mitochondrial probe. The cells were analyzed with time-lapse and immunofluorescence/confocal microscopy. In this paper, we describe that different sound stimuli seem to influence the growth or death of HL1 cells, resulting in a different mitochondrial localization and expression of cytoskeletal proteins. Since the cellular behaviour seems to correlate with the meaning of the sound used, we speculate that it can be “understood” by the cells by virtue of the different sound waves geometric properties that we have photographed and filmed. A theoretical physical model is proposed to explain our preliminary results.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3