Insulin-like Growth Factor-1 Regulates the Mechanosensitivity of Chondrocytes by Modulating TRPV4

Author:

Trompeter Nicholas,Gardinier Joseph D.,DeBarros Victor,Boggs Mary,Gangadharan Vimal,Cain William J.,Hurd Lauren,Duncan Randall L.

Abstract

ABSTRACTBoth mechanical and IGF-1 stimulation are required for normal articular cartilage development and maintenance of the extracellular matrix. While much effort has been made to define the signaling pathways associated with these anabolic stimuli, we focused on how these pathways interact to regulate chondrocyte function. The Transient Receptor Potential Vanilloid 4 (TRPV4) channel is central to chondrocyte mechanotransduction and regulation of cartilage homeostasis. However, the mechanism by which TRPV4 is mechanically gated or regulated is not clear. In this study we propose that insulin-like growth factor 1 (IGF-1), which is important in regulating matrix production during mechanical load, modulates TRPV4 channel activity. Our studies indicate that IGF-1 reduces hypotonic-induced TRPV4 currents, and intracellular calcium flux by increasing stress fiber formation and apparent cell stiffness. Disruption of F-actin following IFG-1 treatment results in the return of the intracellular calcium response to hypotonic swelling. Furthermore, we highlight that IGF-1 suppresses TRPV4 mediated calcium flux through the MAP7 binding domain (aa. 798-809), where actin binds to the TRPV4 channel. IGF-1 treatment differentially influences the intracellular calcium flux of HEK 293 cells stably expressing either wild-type or mutant (P799L or G800D) TRPV4 during hypotonic challenge. A key down-stream response to mechanical stimulation of chondrocytes is ATP release. Data here indicate that activation of TRPV4 through hypotonic swelling induces ATP release, but this release is greatly reduced with IGF-1 treatment. Taken together this study indicates that IGF-1 modulates TRPV4 channel response to mechanical stimulation by increasing cell stiffness. As chondrocyte response to mechanical stimulation is greatly altered during OA progression, IGF-1 presents as a promising candidate for prevention and treatment of articular cartilage damage.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3