Role of RgsA in oxidative stress resistance in Pseudomonas aeruginosa

Author:

Hou Shuyi,Zhang Jiaqing,Ma Xiaobo,Hong Qiang,Fang Lili,Zheng Gangsen,Huang Jiaming,Gao Yingchun,Xu Qiaoli,Zhuang Xingguo,Song Xiuyu

Abstract

AbstractPseudomonas aeruginosa is an extremely common opportunistic pathogen in clinical practice. Patients with metabolic disorders, hematologic diseases, malignancies, who have undergone surgery or who have received certain treatments are susceptible to this bacterium. In addition, P. aeruginosa is a multidrug-resistant that tends to form biofilms and is refractory to treatment. Small regulatory RNAs are RNA molecules that are 40–500 nucleotides long, possess regulatory function, are ubiquitous in bacteria, and are also known as small RNA (sRNA). sRNAs play important regulatory roles in various vital life processes in diverse bacteria and their quantity and diversity of regulatory functions exceeds that of proteins. In this study, we showed that deletion of the sRNA RgsA decreases the growth rate and ability to resist different concentrations and durations of peroxide in P. aeruginosa. These decreases occur not only in the planktonic state, but also in the biofilm state. Finally, protein mass spectrometry was employed to understand changes in the entire protein spectrum. The results presented herein provide a description of the role of RgsA in the life activities of P. aeruginosa at the molecular, phenotypic, and protein levels.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3