Presynaptically silent synapses are modulated by the density of surrounding astrocytes

Author:

Oyabu Kohei,Takeda Kotomi,Kawano Hiroyuki,Kubota Kaori,Watanabe Takuya,Harata N. CharlesORCID,Katsurabayashi ShutaroORCID,Iwasaki Katsunori

Abstract

ABSTRACTThe astrocyte, a major glial cell type, is involved in formation and maturation of synapses, and thus contributes to sustainable synaptic transmission between neurons. Given that the animals in the higher phylogenetic tree have brains with higher density of glial cells with respect to neurons, there is a possibility that the relative astrocytic density directly influences synaptic transmission. However, the notion has not been tested thoroughly. Here we addressed it, by using a primary culture preparation where single hippocampal neurons are surrounded by a variable but countable number of cortical astrocytes in dot-patterned microislands, and recording synaptic transmission by patch-clamp electrophysiology. Neurons with a higher astrocytic density showed a higher amplitude of evoked excitatory postsynaptic current (EPSC) than that of neurons with a lower astrocytic density. The size of readily releasable pool of synaptic vesicles per neuron was significantly higher. The frequency of spontaneous synaptic transmission (miniature EPSC) was higher, but the amplitude was unchanged. The number of morphologically identified glutamatergic synapses was unchanged, but the number of functional ones was increased, indicating a lower ratio of presynaptically silent synapses. Taken together, the higher astrocytic density enhanced excitatory synaptic transmission by increasing the number of functional synapses through presynaptic un-silencing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3