A Fully Automatic Deep Learning System for COVID-19 Diagnostic and Prognostic Analysis

Author:

Wang Shuo,Zha Yunfei,Li Weimin,Wu Qingxia,Li Xiaohu,Niu Meng,Wang Meiyun,Qiu Xiaoming,Li Hongjun,Yu He,Gong Wei,Bai Yan,Li Li,Zhu Yongbei,Wang Liusu,Tian Jie

Abstract

AbstractCoronavirus disease 2019 (COVID-19) has spread globally, and medical resources become insufficient in many regions. Fast diagnosis of COVID-19, and finding high-risk patients with worse prognosis for early prevention and medical resources optimization is important. Here, we proposed a fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis by routinely used computed tomography.We retrospectively collected 5372 patients with computed tomography images from 7 cities or provinces. Firstly, 4106 patients with computed tomography images and gene information were used to pre-train the DL system, making it learn lung features. Afterwards, 1266 patients (924 with COVID-19, and 471 had follow-up for 5+ days; 342 with other pneumonia) from 6 cities or provinces were enrolled to train and externally validate the performance of the deep learning system.In the 4 external validation sets, the deep learning system achieved good performance in identifying COVID-19 from other pneumonia (AUC=0.87 and 0.88) and viral pneumonia (AUC=0.86). Moreover, the deep learning system succeeded to stratify patients into high-risk and low-risk groups whose hospital-stay time have significant difference (p=0.013 and 0.014). Without human-assistance, the deep learning system automatically focused on abnormal areas that showed consistent characteristics with reported radiological findings.Deep learning provides a convenient tool for fast screening COVID-19 and finding potential high-risk patients, which may be helpful for medical resource optimization and early prevention before patients show severe symptoms.Take-home messageFully automatic deep learning system provides a convenient method for COVID-19 diagnostic and prognostic analysis, which can help COVID-19 screening and finding potential high-risk patients with worse prognosis.

Publisher

Cold Spring Harbor Laboratory

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ethical COVID-19 Detection via Machine Learning: An Unblemished Approach;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14

2. A Deep Learning Revolution: Using Residual Networks for COVID-19 Detection in CT Scans;2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2024-01-11

3. Deep Learning Approach for Advanced COVID-19 Analysis;International Journal of Innovative Technology and Exploring Engineering;2023-09-30

4. COVID-19 Detection using Deep Learning;International Journal of Advanced Research in Science, Communication and Technology;2023-04-26

5. A Study of COVID-19 and Its Detection Methods Using Imaging Techniques;Futuristic Communication and Network Technologies;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3