Htr6 and Sstr3 ciliary targeting relies on both IC3 loops and C-terminal tails

Author:

Barbeito PabloORCID,Tachibana Yuki,Martin-Morales RaquelORCID,Moreno Paula,Mykytyn KirkORCID,Kobayashi Tetsuo,Garcia-Gonzalo Francesc R.ORCID

Abstract

ABSTRACTG protein-coupled receptors (GPCRs) are the most common pharmacological target in clinical practice. To perform their signaling functions, many GPCRs must accumulate at primary cilia, microtubule-based plasma membrane protrusions that work as cellular antennae. Despite their great importance, the molecular mechanisms underlying GPCR ciliary targeting remain poorly understood. Serotonin receptor 6 (Htr6) and somatostatin receptor 3 (Sstr3) are two brain-enriched ciliary GPCRs controlling cognition and involved in multiple pathologies such as Alzheimer’s disease and cancer. We previously showed that the third intracellular loops (IC3s) of Htr6 and Sstr3 contain ciliary targeting sequences (CTSs) that are sufficient to confer ciliary localization to non-ciliary GPCRs. However, these CTSs are dispensable for the ciliary targeting of Htr6 and Sstr3 themselves, suggesting these GPCRs have additional CTSs. Herein, we show that the C-terminal tails of Htr6 and Sstr3 also contain CTSs, which act redundantly with those in the IC3s. Accordingly, simultaneous disruption of CTS1 (IC3) and CTS2 (C-terminal tail) abolishes ciliary targeting of both receptors. Mapping the individual residues required for Htr6 ciliary targeting reveals RKQ and LPG motifs critical for CTS1 and CTS2 function, respectively. In Sstr3, CTS1 function relies on the tandem AP[AS]CQ motifs and a subsequent arginine-rich stretch, whereas CTS2 operation requires the juxtamembrane residues. Furthermore, we shed light on the mechanisms of action of Htr6 CTSs by showing how they regulate binding to Tulp3 and Rabl2, two adapters needed for ciliary GPCR targeting.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3