Author:
Almad Akshata A.,Taga Arens,Joseph Jessica,Welsh Connor,Patankar Aneesh,Gross Sarah K.,Richard Jean-Philippe,Pokharel Aayush,Lillo Mauricio,Dastgheyb Raha,Eggan Kevin,Haughey Norman,Contreras Jorge E.,Maragakis Nicholas J.
Abstract
AbstractConnexin 43 (Cx43) gap junctions and hemichannels mediate astrocyte intercellular communication in the central nervous system under normal conditions and may contribute to astrocyte-mediated neurotoxicity in amyotrophic lateral sclerosis (ALS). Here we show that astrocyte-specific knockout of Cx43 in a mouse model of ALS slows disease progression both spatially and temporally, provides motor neuron (MN) protection, and improves survival. In human ALS tissues and biofluids, we observe that higher levels of Cx43 correlate with accelerated disease progression. Using human iPSC-derived astrocytes (hiPSC-A) from both familial and sporadic ALS, we show that Cx43 is upregulated and that Cx43-hemichannels are enriched at the astrocyte membrane. We then demonstrate that the pharmacological blockade of Cx43-hemichannels in ALS astrocytes, during a specific temporal window, provides neuroprotection of hiPSC-MN and reduces ALS astrocyte-mediated neuronal hyperexcitability. Our data identify Cx43 hemichannels as novel conduits of astrocyte-mediated disease progression and a pharmacological target for disease-modifying ALS therapies.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献