AI boosted molecular MRI for apoptosis detection in oncolytic virotherapy

Author:

Perlman OrORCID,Ito HirotakaORCID,Herz KaiORCID,Shono NaoyukiORCID,Nakashima Hiroshi,Zaiss MoritzORCID,Chiocca E. AntonioORCID,Cohen OuriORCID,Rosen Matthew S.ORCID,Farrar Christian T.ORCID

Abstract

AbstractOncolytic virotherapy is a promising treatment for high mortality cancers1. Non-invasive imaging of the underlying molecular processes is an essential tool for therapy optimization and assessment of viral spread, innate immunity, and therapeutic response2, 3. However, previous methods for imaging oncolytic viruses did not correlate with late viral activity4or had poor sensitivity and specificity5. Similarly, methods developed to image treatment response, such as apoptosis, proved to be slow, nonspecific, or require the use of radioactive or metal-based contrast agents6–8. To date, no method has been widely adopted for clinical use. We describe here a new method for fast magnetic resonance molecular imaging with quantitative proton chemical-exchange specificity to monitor oncolytic virotherapy treatment response. A deep neural network enabled the computation of quantitative biomarker maps of protein and lipid/macromolecule concentrations as well as intracellular pH in a glioblastoma multiforme mouse brain tumor model. Early detection of apoptotic response to oncolytic virotherapy, characterized by decreased cytosolic pH and protein synthesis, was observed in agreement with histology. Clinical translation was demonstrated in a normal human subject, yielding molecular parameters in good agreement with literature values9. The developed method is directly applicable to a wide range of pathologies, including stroke10, cancer11–13, and neurological disorders14, 15.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3