Phenotypic Shifts in Neurons of the Dorsal Motor Nucleus of the Vagus Resulting from Chronic Cardiac Ischemia

Author:

Gorky JonathanORCID,Vadigepalli Rajanikanth,Schwaber James

Abstract

AbstractHeart disease remains the number one cause of mortality in the world in spite of significant efforts aimed at treatment. The use of vagal stimulation in the treatment of heart failure has shown mixed successes (Dicarlo et al. 2013; Zannad et al. 2015), suggesting that the treatment has potential, but that the mechanism incompletely understood. Vagal activity confers a robust cardioprotective effect in both humans and animal models, preferentially originating specifically from the dorsal motor nucleus of the vagus (DMV) and deriving a significant benefit from intact gut projections, not just cardiac (Shinlapawittayatorn et al. 2013; Mastitskaya et al. 2012; Basalay et al. 2012). In order to examine the DMV response to heart failure, myocardial infarction was induced in male Sprague Dawley rats. DMV neurons were isolated in small pools of single cells using laser capture microdissection 1 week and 3 weeks after infarction and their gene expression assayed. The results show a transcriptional shift towards a neurosecretory phenotype starting at 1 week and increasing in recruitment of neurons to 3 weeks. The LAD ligation shift appears mediated in part by upregulation of Pax4a, a transcription factor most active during stem cell development of neurosecretory cells during embryonic development. This phenotype is characterized by upregulation of Cacna1d (Cav1.3) and Hcn2 along with increased expression of Cck and Sst. This work suggests that the neurons of the DMV adaptively respond to the dynamics present in the periphery, elucidating the means by which the nature of vagal activity responds to heart failure.Significance StatementThe autonomic nervous system plays a significant role in the pathogenesis of cardiovascular disease. Through demonstration of shifting neuronal phenotypes in central neurons in response to peripheral stimuli, we suggest that neuron peptide or neurotransmitter phenotypes are not static in adult rodents. This suggests that even “reflexes” are modifiable dynamic systems. With such plasticity in the transcriptional programming existing in autonomic brain regions there can be new potential therapeutic interventions for cardiovascular disease aimed at leveraging the autonomic nervous system.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3