Folliculin variants linked to Birt-Hogg-Dubé syndrome are targeted for proteasomal degradation

Author:

Clausen Lene,Stein Amelie,Grønbæk-Thygesen Martin,Nygaard Lasse,Søltoft Cecilie L.,Nielsen Sofie V.,Lisby Michael,Ravid Tommer,Lindorff-Larsen Kresten,Hartmann-Petersen RasmusORCID

Abstract

AbstractGermline mutations in the folliculin (FLCN) tumor suppressor gene are linked to Birt-Hogg-Dubé (BHD) syndrome, a dominantly inherited genetic disease characterized by predisposition to fibrofolliculomas, lung cysts, and renal cancer. Most BHD-linkedFLCNvariants include large deletions and splice site aberrations predicted to cause loss of function. The mechanisms by which missense variants and short in-frame deletions inFLCNtrigger disease are unknown. Here, we present computational and experimental studies showing that the majority of such disease-causingFLCNvariants cause loss of function due to proteasomal degradation of the encoded FLCN protein, rather than directly ablating FLCN function. Accordingly, several different single-site FLCN variants are present at strongly reduced levels in cells. In line with our finding that FLCN variants are protein quality control targets, several are also highly insoluble and fail to associate with the FLCN-binding partners FNIP1 and FNIP2. The lack of FLCN binding leads to rapid proteasomal degradation of FNIP1 and FNIP2. Half of the tested FLCN variants are mislocalized in cells, and one variant (ΔE510) forms perinuclear protein aggregates. A yeast-based screen revealed that the deubiquitylating enzyme Ubp15/USP7 and molecular chaperones regulate the turnover of the FLCN variants. Lowering the temperature to 29 °C led to a stabilization of two FLCN missense proteins, and for one variant (R362C), FLCN function was re-established at low temperature. In conclusion, we propose that most BHD-linkedFLCNmissense variants and small in-frame deletions operate by causing misfolding and degradation of the FLCN protein, and that stabilization of certain disease-linked variants may hold therapeutic potential.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel FLCN Variant in a Suspected Birt–Hogg–Dubè Syndrome Patient;International Journal of Molecular Sciences;2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3