The diagnostic evaluation of Convolutional Neural Network (CNN) for the assessment of chest X-ray of patients infected with COVID-19

Author:

Bukhari Syed Usama KhalidORCID,Bukhari Syed Safwan Khalid,Syed Asmara,Shah Syed Sajid Hussain

Abstract

AbstractIntroductionThe main target of COVID-19 is the lungs where it may cause pneumonia in severely ill patients. Chest X-ray is an important diagnostic test to assess the lung for the damaging effects of COVID-19. Many other microbial pathogens can also cause damage to lungs leading to pneumonia but there are certain radiological features which can favor the diagnosis of pneumonia caused by COVID-19. With the rising number of cases of COVID-19, it would be imperative to develop computer programs which may assist the health professionals in the prevailing scenario.Materials & MethodsA total of two hundred and seventy eight (278) images of chest X-rays have been assessed by applying ResNet-50 convolutional neural network architectures in the present study. The digital images were acquired from the public repositories provided by University of Montreal and National Institutes of Health. These digital images of Chest X-rays were divided into three groups labeled as normal, pneumonia and COVID-19. The third group contains digital images of chest X-rays of patients diagnosed with COVID-19 infection while the second group contains images of lung with pneumonia caused by other pathogens.ResultsThe radiological images included in the data set are 89 images of lungs with COVID-19 infection, 93 images of lungs without any radiological abnormality and 96 images of patient with pneumonia caused by other pathogens. In this data set, 80% of the images were employed for training, and 20% for testing. A pre-trained (on ImageNet data set) ResNet-50 architecture was used to diagnose the cases of COVID-19 infections on lung X-ray images. The analysis of the data revealed that computer vision based program achieved diagnostic accuracy of 98.18 %, and F1-score of 98.19.ConclusionThe performance of convolutional neural network regarding the differentiation of pulmonary changes caused by COVID-19 from the other type of pneumonias on digital images of the chest X-rays is excellent and it may be an extremely useful adjunct tool for the health professionals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3