The Effect of Self-Loading on the Mechano-Stability and Stalk Lodging Resistance of Plant Stems

Author:

Stubbs Christopher J,Oduntan Yusuf,Keep Tyrone,Noble Scott D,Robertson Daniel J.ORCID

Abstract

AbstractBackgroundStalk lodging (breaking of agricultural plant stalks prior to harvest) is a multi-billion dollar a year problem. Stalk lodging occurs when bending moments induced by a combination of external loading (e.g. wind) and self-loading (e.g. the plant’s own weight) exceed the bending strength of plant stems. Previous biomechanical plant stem models have investigated both external loading and self-loading of plants, but have evaluated them as separate and independent phenomena. However, these two types of loading are highly interconnected and mutually dependent. The purpose of this paper is twofold: (1) to investigate the combined effect of external loads and plant weight on the displacement and stress state of plant stems / stalks, and (2) to provide a generalized framework for accounting for self-weight during mechanical phenotyping experiments used to predict stalk lodging resistance.ResultsA method of properly accounting for the interconnected relationship between self-loading and external loading of plants stems is presented. The interconnected set of equations are used to produce user-friendly applications by presenting (1) simplified self-loading correction factors for a number of common external loading configurations of plants, and (2) a generalized Microsoft Excel framework that calculates the influence of self-loading on crop stems. The effect of self-loading on the structural integrity of wheat is examined in detail. A survey of several other plants is conducted and the influence of self-loading on their structural integrity is also presented.ConclusionsThe self-loading of plants plays a potentially critical role on the structural integrity of plant stems. Equations and tools provided herein enable researchers to account for the plant’s weight when investigating the flexural rigidity and bending strength of plant stems.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stalk Strength Improvement in Crop Plants: A Progress Report;Annual Plant Reviews online;2021-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3