The Stochastic Resonance model of auditory perception: A unified explanation of tinnitus development, Zwicker tone illusion, and residual inhibition

Author:

Schilling Achim,Tziridis Konstantin,Schulze Holger,Krauss Patrick

Abstract

AbstractStochastic Resonance (SR) has been proposed to play a major role in auditory perception, and to maintain optimal information transmission from the cochlea to the auditory system. By this, the auditory system could adapt to changes of the auditory input at second or even sub-second timescales. In case of reduced auditory input, somatosensory projections to the dorsal cochlear nucleus would be disinhibited in order to improve hearing thresholds by means of SR. As a side effect, the increased somatosensory input corresponding to the observed tinnitus-associated neuronal hyperactivity is then perceived as tinnitus. In addition, the model can also explain transient phantom tone perceptions occurring after ear plugging, or the Zwicker tone illusion. Vice versa, the model predicts that via stimulation with acoustic noise, SR would not be needed to optimize information transmission, and hence somatosensory noise would be tuned down, resulting in a transient vanishing of tinnitus, an effect referred to as residual inhibition.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3