Cytoplasmic incompatibility between Old and New World populations of a tramp ant

Author:

Ün ÇiğdemORCID,Schultner EvaORCID,Manzano-Marín AlejandroORCID,Flórez Laura V.ORCID,Seifert Bernhard,Heinze JürgenORCID,Oettler JanORCID

Abstract

AbstractAs we enter the Anthropocene, the evolutionary dynamics of species will change drastically, and as yet unpredictably, due to human activity. Already today, increases in global human traffic have resulted in the rapid spread of species to new areas, leading to the formation of geographically isolated populations. These go on to evolve in allopatry, which can lead to reproductive isolation, and potentially, the formation of new species. Surprisingly, little is known about such eco-evolutionary processes in ants, even though numerous invasive ant species are globally distributed in geographically isolated populations. Here, we describe the first case of cytoplasmic incompatibility (CI) between populations of a cosmotropic distributed tramp ant with Asian roots, Cardiocondyla obscurior, which has acquired a novel Wolbachia strain in the New World. Our study uncovers the first symbiont-induced mechanism of reproductive isolation in ants, providing a novel perspective on the biology of globally distributed ants.

Publisher

Cold Spring Harbor Laboratory

Reference75 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3