Harvestman: A framework for hierarchical feature learning and selection from whole genome sequencing data

Author:

Frisby Trevor S.,Baker Shawn James,Marçais Guillaume,Hoang Quang Minh,Kingsford Carl,Langmead Christopher James

Abstract

AbstractWe present Harvestman, a method that takes advantage of hierarchical relationships among the possible biological interpretations and representations of genomic variants to perform automatic feature learning, feature selection, and model building. We demonstrate that Harvestman scales to thousands of genomes comprising more than 84 million variants by processing phase 3 data from the 1000 Genomes Project, the largest publicly available collection of whole genome sequences. Next, using breast cancer data from The Cancer Genome Atlas, we show that Harvestman selects a rich combination of representations that are adapted to the learning task, and performs better than a binary representation of SNPs alone. Finally, we compare Harvestman to existing feature selection methods and demonstrate that our method selects smaller and less redundant feature subsets, while maintaining accuracy of the resulting classifier. The data used is available through either the 1000 Genomes Project or The Cancer Genome Atlas. Access to TCGA data requires the completion of a Data Access Request through the Database of Genotypes and Phenotypes (dbGaP). Binary releases of Harvestman compatible with Linux, Windows, and Mac are available for download at https://github.com/cmlh-gp/Harvestman-public/releases

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. A hierarchical feature and sample selection framework and its application for alzheimer’s disease diagnosis;Scientific Reports,2017

2. Gene Ontology: tool for the unification of biology

3. Bengio, Y. , Courville, A. C. , & Vincent, P. (2012). Unsupervised feature learning and deep learning: A review and new perspectives. CoRR, abs/1206.5538. Retrieved from http://arxiv.org/abs/1206.5538

4. Selection of relevant features and examples in machine learning

5. Choi, S. , Cha, S.-H. , & Tappert, C. (2009, 11). A survey of binary similarity and distance measures. J. Syst. Cybern. Inf., 8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3