Estrogen and sex-dependent loss of the vocal learning system in female zebra finches

Author:

Choe Ha NaORCID,Tewari Jeevan,Zhu Kevin W.ORCID,Davenport Matthew,Matsunami HiroakiORCID,Jarvis Erich D.ORCID

Abstract

AbstractSex hormones alter the organization of the brain during early development and coordinate various behaviors throughout life. In zebra finches, song learning is limited to males, and the associated song learning brain pathway only matures in males and atrophies in females. This atrophy can be reversed by giving females exogenous estrogen during early post-hatch development, but whether normal male song system development requires estrogen is uncertain. For the first time in songbirds, we administered exemestane, a potent third generation estrogen synthesis inhibitor, from the day of hatching until adulthood. We examined the behavior, brain, and transcriptome of individual song nuclei of these pharmacologically manipulated animals. We found that males with long-term exemestane treatment had diminished male-specific plumage, impaired song learning, but retained normal song nuclei sizes and most, but not all, of their specialized transcriptome. Consistent with prior findings, females with long-term estrogen treatment retained a functional song system, and we further observed their song nuclei had specialized gene expression profiles similar, but not identical to males. We also observed that different song nuclei responded to estrogen manipulation differently, with Area X in the striatum being the most altered by estrogen modulation. These findings support the hypothesis that song learning is an ancestral trait in both sexes, which was subsequently suppressed in females of some species, and that estrogen has come to play a critical role in modulating this suppression as well as refinement of song learning.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3