GTP-dependent formation of straight oligomers leads to nucleation of microtubules

Author:

Ayukawa Rie,Iwata Seigo,Imai Hiroshi,Kamimura Shinji,Hayashi Masahito,Ngo Kien Xuan,Minoura Itsushi,Uchimura Seiichi,Makino Tsukasa,Shirouzu Mikako,Shigematsu Hideki,Sekimoto Ken,Gigant Benoît,Muto Etsuko

Abstract

AbstractMicrotubule (MT) nucleation is essential for cellular activities, but its mechanism is not known because of the difficulty involved in capturing rare stochastic events in the early stage of polymerization. In cells, MTs are nucleated at tubulin concentrations significantly lower than those required for spontaneous nucleation in vitro. The high efficiency of nucleation is due to the synergistic effects of various cellular factors, but the underlying mechanism has not been clarified yet. Here, combining negative stain electron microscopy and kinetic analysis, we demonstrate that the formation of single-stranded straight oligomers with critical size is essential for nucleation in vitro. While the single-stranded oligomers of GTP-tubulin that form prior to MT nucleation show variable curvatures including a few straight oligomers, only curved oligomers are observed among the GDP-bound counterparts. The Y222F mutation in β-tubulin increases the proportion of straight oligomers and drastically accelerates MT nucleation. Our results support a model in which GTP binding causes a small shift in the distribution of oligomer curvature, generating a minor population of straight oligomers compatible with lateral association and further growth to MTs. Our study suggests that cellular factors involved in nucleation promote it via stabilization of straight oligomers.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3