Explicit feedback and instruction do not change shoulder muscle activity reduction after shoulder fixation

Author:

Maeda Rodrigo S.ORCID,Zdybal Julia M.,Gribble Paul L.ORCID,Pruszynski J. AndrewORCID

Abstract

AbstractGenerating pure elbow rotation requires contracting muscles at both the shoulder and elbow joints to counter torques that arise at the shoulder when the forearm rotates (i.e., intersegmental dynamics). Previous work has shown that human participants learn to reduce their shoulder muscle activity if the same elbow movement is performed after the shoulder joint is mechanically locked, which is appropriate because locking the shoulder joint eliminates the torques that arise at the shoulder when the forearm rotates. However, this learning is slow (i.e., it unfolds over hundreds of trials) and incomplete (i.e., shoulder activity is not fully eliminated). Here we investigated whether and how the addition of explicit strategies and biofeedback modulate this type of learning. Three groups of human participants (N = 55) performed voluntary pure elbow rotations using a robotic exoskeleton that permits shoulder and elbow rotation in a horizontal plane. Participants did the task with the shoulder free to move (baseline), then with the shoulder joint locked by the robotic manipulandum (adaptation), and then with the shoulder free to move again (post-adaptation). The first group of participants performed this protocol and received no instructions about what to do after their shoulder was locked. The second group of participants received visual feedback about their shoulder muscle activity after each movement and was instructed to reduce their shoulder activity to zero. The third group of participants also received visual biofeedback, but it was removed part way through the experiment. We found that, although all groups learned, the rate and magnitude of learning was not reliably different across the groups. Taken together, our results suggest that learning new arm dynamics, unlike other motor learning paradigms, unfolds independent of explicit instructions, biofeedback and task instructions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3