Abstract
ABSTRACTIn this paper, deep learning is coupled with explainable artificial intelligence techniques for the discovery of representative genomic sequences in SARS-CoV-2. A convolutional neural network classifier is first trained on 553 sequences from available repositories, separating the genome of different virus strains from the Coronavirus family with considerable accuracy. The network’s behavior is then analyzed, to discover sequences used by the model to identify SARS-CoV-2, ultimately uncovering sequences exclusive to it. The discovered sequences are first validated on samples from other repositories, and proven able to separate SARS-CoV-2 from different virus strains with near-perfect accuracy. Next, one of the sequences is selected to generate a primer set, and tested against other state-of-the-art primer sets on existing datasets, obtaining competitive results. Finally, the primer is synthesized and tested on patient samples (n=6 previously tested positive), delivering a sensibility similar to routine diagnostic methods, and 100% specificity. In this paper, deep learning is coupled with explainable artificial intelligence techniques for the discovery of representative genomic sequences in SARS-CoV-2. A convolutional neural network classifier is first trained on 553 sequences from NGDC, separating the genome of different virus strains from the Coronavirus family with accuracy 98.73%. The network’s behavior is then analyzed, to discover sequences used by the model to identify SARS-CoV-2, ultimately uncovering sequences exclusive to it. The discovered sequences are validated on samples from NCBI and GISAID, and proven able to separate SARS-CoV-2 from different virus strains with near-perfect accuracy. Next, one of the sequences is selected to generate a primer set, and tested against other state-of-the-art primer sets, obtaining competitive results. Finally, the primer is synthesized and tested on patient samples (n=6 previously tested positive), delivering a sensibility similar to routine diagnostic methods, and 100% specificity. The proposed methodology has a substantial added value over existing methods, as it is able to both identify promising primer sets for a virus from a limited amount of data, and deliver effective results in a minimal amount of time. Considering the possibility of future pandemics, these characteristics are invaluable to promptly create specific detection methods for diagnostics.
Publisher
Cold Spring Harbor Laboratory
Reference43 articles.
1. Coronavirus Genomics and Bioinformatics Analysis
2. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding;The Lancet,2020
3. Organization, W. H. WHO report Coronavirus disease 2019 (COVID-19) (World Health Organization Geneva :, 2020.). Licence : CC BY-NC-SA 3.0 IGO.
4. Wang, Y. , Kang, H. , Liu, X. & Tong, Z. Combination of rt-qpcr testing and clinical features for diagnosis of covid-19 facilitates management of sars-cov-2 outbreak. J. Med. Virol. (2020).
5. Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-ncov) by real-time rt-pcr. Eurosurveillance 25 (2020).
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献