Dynamic cell wall modifications in brassicas during clubroot disease

Author:

Badstöber Julia,Ciaghi Stefan,Neuhauser SigridORCID

Abstract

AbstractBiotic interactions of plants and microbial pathogens can cause drastic changes in cell wall composition in response to developmental reprogramming caused as consequence of an infection. Clubroot disease, caused by the biotrophic plant pathogen Plasmodiophora brassicae (Phytomyxea, Rhizaria), is the economically most important disease of Brassica crops worldwide. The disease is best known by the characteristic hypertrophied roots (root galls, clubroots). Amongst a series of physiological changes of the host tissue, the formation of the characteristic root galls leads to cell wall modification and reorganization. Cell wall chemistry and the hosts genetic repertoire are discussed to play a role in the resilience of plants against clubroot disease. Plant cells infected with P. brassicae are markedly enlarged, and look very differently from uninfected, healthy cells. Here we systematically review cell wall related processes that lead to the typical clubroot phenotype and provide novel insights how P. brassicae uses these modifications to benefit its own development. An infection with P. brassicae impacts on nearly all cell wall related processes, but all alterations are meaningful for successful growth and development of P. brassicae. Processes related to cell wall stability and rigidity (e.g. cellulose, pectin or lignin synthesis) are down-regulated, while cell wall degrading enzymes or processes that increase the flexibility of the host cell wall (e.g. expansin) are up-regulated. The here presented findings indicate that P. brassicae weakens the structural stability of its host cell while it increases its elasticity, which in consequence allows P. brassicae to grow bigger and ultimately to develop more resting spores. Consequently, the understanding of the modification of the host cell wall is important for the formation of the characteristic root galls but also to better understand clubroot disease.

Publisher

Cold Spring Harbor Laboratory

Reference82 articles.

1. Regulation of phenylpropanoid metabolism in relation to lignin biosynthesis in plants;International Review of Cytology - a Survey of Cell Biology, Vol 172,1997

2. Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection;Plant Science,2008

3. Fine mapping of Rcr1 and analyses of its effect on transcriptome patterns during infection by Plasmodiophora brassicae;BMC Genomics,2014

4. Ciaghi, S. , Schwelm, A. , and Neuhauser, S. (2018). Transcriptomic response in symptomless roots of clubroot infected kohlrabi mirrors resistant plants. bioRxiv, 391516.

5. Ciaghi, S. , Schwelm, A. , and Neuhauser, S. (2019). Transcriptomic response in symptomless roots of clubroot infected kohlrabi (Brassica oleracea var. gongylodes) mirrors resistant plants. bioRxiv, 391516.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3