CO2 reduction driven by a pH gradient

Author:

Hudson ReubenORCID,de Graaf Ruvan,Rodin Mari Strandoo,Ohno Aya,Lane NickORCID,McGlynn Shawn E.ORCID,Yamada Yoichi M.A.ORCID,Nakamura RyuheiORCID,Barge Laura M.ORCID,Braun DieterORCID,Sojo VictorORCID

Abstract

AbstractAll life on Earth is built of organic molecules, so the primordial sources of reduced carbon are a major open question in studies of the origin of life. A variant of the alkaline-vent theory suggests that organics could have been produced by the reduction of CO2 via H2 oxidation, facilitated by geologically sustained pH gradients. The process would be an abiotic analog—and proposed evolutionary predecessor—of the modern Wood-Ljungdahl acetyl-Co-A pathway of extant archaea and bacteria. The first energetic bottleneck of the pathway involves the endergonic reduction of CO2 with H2 to formate, which has proven elusive in low-temperature abiotic settings. Here we show the reduction of CO2 with H2 at moderate pressures (1.5 bar), driven by microfluidic pH gradients across inorganic Fe(Ni)S precipitates. Isotopic labelling with 13C confirmed production of formate. Separately, deuterium (2H) labelling indicated that electron transfer to CO2 did not occur via direct hydrogenation with H2. Instead, freshly deposited Fe(Ni)S precipitates appear to facilitate electron transfer in an electrochemical-cell mechanism with two distinct half-reactions. Decreasing the pH gradient significantly, or removing either H2 or the precipitate, yielded no detectable product. Our work demonstrates the feasibility of spatially separated, yet electrically coupled geochemical reactions as drivers of otherwise endergonic processes. Beyond corroborating the ability of early-Earth alkaline hydrothermal systems to couple carbon reduction to hydrogen oxidation through geologically plausible and biologically relevant mechanisms, these results may also be of significance for industrial and environmental applications, where other redox reactions could be facilitated using similarly mild approaches.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. From geochemistry to biochemistry: Chemiosmotic coupling and transition element clusters in the onset of life and photosynthesis;Geochemical News,2002

2. The rocky roots of the acetyl-CoA pathway

3. Serpentinite and the dawn of life

4. An Origin-of-Life Reactor to Simulate Alkaline Hydrothermal Vents

5. The Origin of Life in Alkaline Hydrothermal Vents

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3