Pronounced α-synuclein pathology in a seeding-based mouse model is not sufficient to induce mitochondrial respiration deficits in the striatum and amygdala

Author:

Burtscher Johannes,Copin Jean-Christophe,Sandi Carmen,Lashuel Hilal A.

Abstract

AbstractIncreasing evidence suggests that crosstalk between α-synuclein pathology formation and mitochondrial dysfunctions plays a central role in the pathogenesis of Parkinson’s disease and related synucleinopathies. While mitochondrial dysfunction is a well-studied phenomenon in the substantia nigra, which is selectively vulnerable in Parkinson’s disease and some models thereof, less information is available in other brain regions that are also affected by synuclein pathology.Therefore, we sought to test the hypothesis that early α-synuclein pathology causes mitochondrial dysfunction, and that this effect might be exacerbated in conditions of increased vulnerability of affected brain regions, such as the amygdala.We combined a model of intracerebral α-synuclein pathology seeding with chronic glucocorticoid treatment modelling non-motor symptoms of Parkinson’s disease and affecting amygdala physiology. We measured mitochondrial respiration, ROS generation and protein abundance as well as α-synuclein pathology in male mice.Chronic corticosterone administration induced mitochondrial hyperactivity in the amygdala. Although injection of α-synuclein preformed fibrils into the striatum resulted in pronounced α-synuclein pathology in both striatum and amygdala, mitochondrial respiration in these brain regions was altered in neither chronic corticosterone nor control conditions.Our results suggest that early stage α-synuclein pathology does not influence mitochondrial respiration in the striatum and amygdala, even in corticosterone-induced respirational hyperactivity. We discuss our findings in light of relevant literature, warn of a potential publication bias and encourage scientist to report their negative results in the frame of this model.Significance statementWe provide evidence that early stage synucleinopathy by itself or in combination with exogenous corticosterone induced amygdala hyperactivity did not compromise mitochondrial respiration in the striatum and amygdala in one of the most commonly used models of synucleinopathies. These results may explain, why this model in the hands of many research groups does not elicit pronounced Parkinson’s disease like symptoms in the absence of mitochondrial dysfunction in brain regions strongly affected by synuclein pathology and involved in non-motor (amygdala) and motor (striatum) symptoms. Our findings call for rigorous investigation of the short- and long-term effects of α-synuclein pathology on mitochondrial function/dysfunction in this model, in particular in brain regions strongly affected by neurodegeneration such as the substantia nigra pars compacta.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3