Abstract
AbstractThe patterns and outcomes of coevolution are expected to depend on intraspecific trait variation. Various evolutionary factors can change this variation in time. As a result, modeling coevolutionary processes solely in terms of mean trait values may not be sufficient; one may need to study the dynamics of the whole trait distribution. Here, we develop a theoretical framework for studying the effects of evolving intraspecific variation in two-species coevolutionary systems. In particular, we build and study mathematical models of competition, exploiter-victim interactions, and mutualism in which the strength of within- and between-species interactions depends on the difference in continuously varying traits. We use analytical approximations based on the invasion analysis and supplement it with a numerical method. We find that intraspecific variation can be maintained if stabilizing selection is weak in at least one species. When intraspecific variation is maintained, stable coexistence is promoted by small ranges of interspecific interaction in two-species competition and mutualism, and large ranges in exploiter-victim interactions. We show that trait distributions can become multimodal. Our approach and results contribute to the understanding of the ecological consequences of intraspecific variation in coevolutionary systems by exploring its effects on population densities and trait distributions.
Publisher
Cold Spring Harbor Laboratory