Abstract
SummaryCortical parallel processing streams segregate many diverse features of a sensory scene. However, some features are distributed across streams, begging the question of whether and how such distributed representations contribute to perception. We determined the necessity of primary visual cortex (V1) and three key higher visual areas (LM, AL and PM) for perception of orientation and contrast, two features that are robustly encoded across all four areas. Suppressing V1, LM or AL decreased sensitivity for both orientation discrimination and contrast detection, consistent with a role for these areas in sensory perception. In comparison, suppressing PM selectively increased false alarm rates during contrast detection, without any effect on orientation discrimination. This effect was not retinotopically-specific, suggesting a distinct role for PM in the regulation of noise during decision-making. Thus, we find that distributed representations in the visual system can nonetheless support specialized perceptual roles for higher visual cortical areas.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献