Cancer Stem Cell Enrichment and Metabolic Substrate Adaptability are Driven by Hydrogen Sulfide Suppression in Glioblastoma

Author:

Silver Daniel J.ORCID,Roversi Gustavo A.,Bithi Nazmin,Neumann Chase K. A.,Troike Katie M.ORCID,Ahuja Grace K.,Reizes Ofer,Brown J. Mark,Hine Christopher,Lathia Justin D.

Abstract

AbstractGlioblastoma (GBM) remains among the deadliest of human malignancies. The emergence of the cancer stem cell (CSC) phenotype represents a major challenge to disease management and durable treatment response. The extrinsic, environmental, and lifestyle factors that result in CSC enrichment are not well understood. The CSC state endows cells with a fluid metabolic profile, enabling the utilization of multiple nutrient sources. Therefore, to test the impact of diet on CSC enrichment, we evaluated disease progression in tumor-bearing mice fed an obesity-inducing high-fat diet (HFD) versus an energy-balanced, low-fat control diet. HFD consumption resulted in hyper-aggressive disease that was accompanied by CSC enrichment and shortened survival. HFD consumption also drove intracerebral accumulation of saturated fats, which in turn inhibited the production and signaling of the gasotransmitter hydrogen sulfide (H2S). H2S is an endogenously produced bio-active metabolite derived from sulfur amino acid catabolism. It functions principally through protein S-sulfhydration and regulates a variety of programs including mitochondrial bioenergetics and cellular metabolism. Inhibition of H2S synthesis resulted in increased proliferation and chemotherapy resistance, whereas treatment with H2S donors led to cytotoxicity and death of cultured GBM cells. Compared to non-cancerous controls, patient GBM specimens were reduced in overall protein S-sulfhydration, which was primarily lost from proteins regulating cellular metabolism. These findings support the hypothesis that diet-regulated H2S signaling serves to suppress GBM by restricting metabolic adaptability, while its loss triggers CSC enrichment and disease acceleration. Interventions augmenting H2S bioavailability concurrent with GBM standard of care may improve outcomes for GBM patients.One Sentence SummaryConsumption of a high-fat diet (HFD) accelerates glioblastoma (GBM) by inhibiting the production and signaling of the tumor-suppressive metabolite hydrogen sulfide (H2S).

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

1. Survival comparison between glioblastoma multiforme and other incurable cancers

2. Glioma;Nat. Rev. Dis. Primers,2015

3. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics

4. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma

5. Functional Subclone Profiling for Prediction of Treatment-Induced Intratumor Population Shifts and Discovery of Rational Drug Combinations in Human Glioblastoma;Clin Cancer Res,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3