Tissue Engineered Axon-Based “Living Scaffolds” Promote Survival of Spinal Cord Motor Neurons Following Peripheral Nerve Repair

Author:

Maggiore Joseph C.,Burrell Justin C.ORCID,Browne Kevin D.,Katiyar Kritika S.ORCID,Laimo Franco A.,Ali Zarina S.,Kaplan Hilton M.,Rosen Joseph M.,Cullen D. KacyORCID

Abstract

AbstractPeripheral nerve injury (PNI) impacts millions annually, often leaving debilitated patients with minimal repair options to improve functional recovery. Our group has previously developed tissue engineered nerve grafts (TENGs) featuring long, aligned axonal tracts from dorsal root ganglia (DRG) neurons that are fabricated in custom bioreactors using the process of axon “stretch-growth”. We have shown that TENGs effectively serve as “living scaffolds” to promote regeneration across segmental nerve defects by exploiting the newfound mechanism of axon-facilitated axon regeneration, or “AFAR”, by simultaneously providing haptic and neurotrophic support. To extend this work, the current study investigated the efficacy of living versus non-living regenerative scaffolds in preserving host sensory and motor neuronal health following nerve repair. Rats were assigned across five groups: naïve, or repair using autograft, nerve guidance tube (NGT) with collagen, NGT + non-aligned DRG populations in collagen, or TENGs. We found that TENG repairs yielded equivalent regenerative capacity as autograft repairs based on preserved health of host spinal cord motor neurons and acute axonal regeneration, whereas NGT repairs or DRG neurons within an NGT exhibited reduced motor neuron preservation and diminished regenerative capacity. These acute regenerative benefits ultimately resulted in enhanced levels of functional recovery in animals receiving TENGs, at levels matching those attained by autografts. Our findings indicate that TENGs may preserve host spinal cord motor neuron health and regenerative capacity without sacrificing an otherwise uninjured nerve (as in the case of the autograft), and therefore represent a promising alternative strategy for neurosurgical repair following PNI.HIGHLIGHTSTENGs preserve host spinal cord motor neuron health and regenerative capacity acutely following repair of segmental nerve defects, matching that of the clinical gold-standard autograft and exceeding commercially-available nerve guidance tubes.TENGs facilitated regeneration across segmental nerve defects, yielding similar degree of chronically surviving host spinal motor neurons and functional recovery as compared to autografts.Early surgical intervention for segmental nerve defect with living scaffolds, such as TENGs and autografts, preserves the host regenerative capacity, and likely increases the ceiling for total regeneration and functional recovery at chronic time points compared to (acellular) commercially-available nerve guidance tubes.TENGs preserve host neuronal health and regenerative capacity without sacrificing an otherwise uninjured nerve, and therefore represent a promising alternative strategy to autografts or nerve guidance tube repairs.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tissue Engineered Bands of Büngner for Accelerated Motor and Sensory Axonal Outgrowth;Frontiers in Bioengineering and Biotechnology;2020-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3