God's Organism? The Chick as a Model System for Memory Studies

Author:

Rose Steven P.R.

Abstract

The young chick is a powerful model system in which to study the biochemical and morphological processes underlying memory formation. Training chicks on a one trial passive avoidance task results in a molecular cascade in a specific brain region, the intermediate medial hyperstriatum ventrale. This cascade is initiated by glutamate release and engages a series of synaptic transients including increased calcium flux, up-regulation of NMDA-glutamate receptors, membrane protein phosphorylations, and the retrograde messenger NO. Expression of immediate early genes c-fos and c-jun precedes the synthesis, glycosylation, and redistribution, >4 hr downstream, of a number of synaptic membrane proteins, notably NCAM and L1. Other membrane proteins required in the early phase of memory formation include the amyloid precursor protein (APP) and apolipoprotein E. There are concomitant increases in dendritic spine number and changes in synaptic structure. Nonsynaptic factors, including corticosterone and BDNF, can modulate retention of the avoidance response, enhancing the salience of otherwise weakly retained memory. These results are discussed in relation to general concepts of memory formation and the spatio-temporal distribution of the putative memory trace.

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

Reference106 articles.

1. Antibody to day-old chick brain glycoprotein produces amnesia in adult rats Neurobiol.;Alexinsky;Learn. Mem.,1997

2. Phosphorylation of Synaptic Proteins in Chick Forebrain: Changes with Development and Passive Avoidance Training

3. .

4. The differential roles of right and left sides of the brain in memory formation.;Behav. Brain Res.,1999

5. Testosterone, Search Behaviour and Persistence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3