Electrophysiological signatures of spatial boundaries in the human subiculum

Author:

Lee Sang Ah,Miller Jonathan F.,Watrous Andrew J.,Sperling Michael,Sharan Ashwini,Worrell Gregory A.,Berry Brent M,Jobst Barbara C.,Davis Kathryn A.,Gross Robert E.,Lega Bradley,Sheth Sameer,Das Sandhitsu R.,Stein Joel M.,Gorniak Richard,Rizzuto Daniel S.,Jacobs Joshua

Abstract

AbstractEnvironmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly-related species. In rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal formation. While studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans, boundary-related neural activity has not been identified electrophysiologically in humans until now. Here we present direct intracranial recordings from the hippocampal formation of surgical epilepsy patients while they performed a virtual spatial navigation task. Our results suggest that encoding target locations near boundaries elicited stronger theta oscillations than for target locations near the center of the environment and that this difference cannot be explained by variables such as trial length, speed, or movement. These findings provide the first direct evidence of boundary-dependent neural activity localized in humans to the subiculum, the homologue of the hippocampal subregion in which most rodent boundary cells are found.Significance StatementSpatial computations using environmental boundaries are an integral part of the brain’s spatial mapping system. In rodents, border/boundary cells in the subiculum and entorhinal cortex reveal boundary coding at the single-neuron level. Although there is good reason to believe that such representations also exist in humans, the evidence has thus far been limited to fMRI studies that broadly implicate the hippocampus in boundary-based navigation. By combining intracranial recordings with high-resolution imaging of hippocampal subregions we identified, for the first time in humans, a neural marker of boundary representation in the subiculum.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cholinergic modulation of spatial learning, memory and navigation;European Journal of Neuroscience;2018-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3