Stress-Induced Transcriptional Memory Accelerates Promoter-Proximal Pause-Release and Decelerates Termination over Mitotic Divisions

Author:

Vihervaara AnniinaORCID,Mahat Dig Bijay,Himanen Samu V.,Blom Malin A.H.,Lis John T.ORCID,Sistonen LeaORCID

Abstract

SummaryHeat shock triggers an instant reprogramming of gene and enhancer transcription, but whether cells encode a memory to stress, at the level of nascent transcription, has remained unknown. Here, we measured transcriptional response to acute heat stress in unconditioned cells and in daughters of cells that had been exposed to a single or multiple heat shocks. Tracking RNA Polymerase II (Pol II) genome-wide at nucleotide-resolution revealed that cells precisely remember their transcriptional identity throughout stress, restoring Pol II distribution at gene bodies and enhancers upon recovery. However, single heat shock primed faster gene-induction in the daughter cells by increasing promoter-proximal Pol II pausing, and accelerating the pause-release. In repeatedly stressed cells, both basal and inducible transcription was refined, and pre-mRNA processing decelerated, which retained transcripts on chromatin and reduced recycling of the transcription machinery. These results mechanistically uncovered how the steps of pause-release and termination maintain transcriptional memory over mitosis.Highlights-Cell type-specific transcription precisely recovers after heat-induced reprogramming-Single heat shock primes genes for accelerated induction over mitotic divisionsviaincreased promoter-proximal Pol II pausing and faster pause-release-Multiple heat shocks refine basal and inducible transcription over mitotic divisions to support survival of the daughter cells-Decelerated termination at active genes reduces recycling of Pol II to heat-activated promoters and enhancers-HSF1 increases the rate of promoter-proximal pause-releaseviadistal and proximal regulatory elements

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Are cachexia-associated tumors transmitTERS of ER stress?;Biochemical Society Transactions;2021-08-02

2. Chromatin conformation remains stable upon extensive transcriptional changes driven by heat shock;Proceedings of the National Academy of Sciences;2019-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3