Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression

Author:

Wiedenhoeft JohnORCID,Brugel Eric,Schliep Alexander

Abstract

AbstractBy combining Haar wavelets with Bayesian Hidden Markov Models, we improve detection of genomic copy number variants (CNV) in array CGH experiments compared to the state-of-the-art, including standard Gibbs sampling. At the same time, we achieve drastically reduced running times, as the method concentrates computational effort on chromosomal segments which are difficult to call, by dynamically and adaptively recomputing consecutive blocks of observations likely to share a copy number. This makes routine diagnostic use and re-analysis of legacy data collections feasible; to this end, we also propose an effective automatic prior. An open source software implementation of our method is available at http://bioinformatics.rutgers.edu/Software/HaMMLET/. The web supplement is at http://bioinformatics.rutgers.edu/Supplements/HaMMLET/.Author SummaryIdentifying large-scale genome deletions and duplications, or copy number variants (CNV), accurately in populations or individual patients is a crucial step in indicating disease factors or diagnosing an individual patient's disease type. Hidden Markov Models (HMM) are a type of statistical model widely used for CNV detection, as well as other biological applications such as the analysis of gene expression time course data or the analysis of discrete-valued DNA and protein sequences.As with many statistical models, there are two fundamentally different inference approaches. In the frequentist framework, a single estimate of the model parameters would be used as a basis for subsequent inference, making the identification of CNV dependent on the quality of that estimate. This is an acute problem for HMM as methods for finding globally optimal parameters are not known. Alternatively, one can use a Bayesian approach and integrate over all possible parameter choices. While the latter is known to lead to significantly better results, the much—up to hundreds of times—larger computational effort prevents wide adaptation so far.Our proposed method addresses this by combining Haar wavelets and HMM. We greatly accelerate fully Bayesian HMMs, while simultaneously increasing convergence and thus the accuracy of the Gibbs sampler used for Bayesian computations, leading to substantial improvements over the state-of-the-art.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3