A general approach for identifying protein epitopes targeted by antibody repertoires using whole proteomes

Author:

Paull Michael L.ORCID,Johnston Tim,Ibsen Kelly N.,Bozekowski Joel D.,Daugherty Patrick S.

Abstract

AbstractAntibodies are essential to functional immunity, yet the epitopes targeted by antibody repertoires remain largely uncharacterized. To aid in characterization, we developed a generalizable strategy to identify antibody-binding epitopes within individual proteins and entire proteomes. Specifically, we selected antibody-binding peptides for 273 distinct sera out of a random library and identified the peptides using next-generation sequencing. To identify antibody-binding epitopes and the antigens from which these epitopes were derived, we tiled the sequences of candidate antigens into short overlapping subsequences of length k (k-mers). We used the enrichment over background of these k-mers in the antibody-binding peptide dataset to identify antibody-binding epitopes. As a positive control, we used this approach, termed K-mer Tiling of Protein Epitopes (K-TOPE), to identify epitopes targeted by monoclonal and polyclonal antibodies of well-characterized specificity, accurately recovering their known epitopes. K-TOPE characterized a commonly targeted antigen fromRhinovirus A, identifying three epitopes recognized by antibodies present in 83% of sera (n = 250). An analysis of 2,908 proteins from 400 viral taxa that infect humans revealed seven enterovirus epitopes and five Epstein-Barr virus epitopes recognized by >30% of specimens. Analysis ofStaphylococcusandStreptococcusproteomes similarly revealed six epitopes recognized by >40% of specimens. These common viral and bacterial epitopes exhibited excellent agreement with previously mapped epitopes. Additionally, we identified 30 HSV2-specific epitopes that were 100% specific against HSV1 in novel and previously reported antigens. The K-TOPE approach thus provides a powerful new tool to elucidate the organisms, antigens, and epitopes targeted by human antibody repertoires.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3