Uncovering novel pathways for enhancing hyaluronan synthesis in recombinantLactococcus lactis: Genome-scale metabolic modelling and experimental validation

Author:

Badri AbinayaORCID,Raman KarthikORCID,Jayaraman GuhanORCID

Abstract

AbstractHyaluronan (HA) is a naturally occurring high-value polysaccharide with important medical applications. HA is commercially produced from pathogenic microbial sources. HA-producing recombinant cell factories that are being developed with GRAS organisms are comparatively less productive than the best natural producers. The metabolism of these recombinant systems needs to be more strategically engineered to achieve significant improvement. Here, we use a genome-scale metabolic network model to account for the entire metabolic network of the cell to predict strategies for improving HA production. We here analyze the metabolic network ofLactococcus lactisadapted to produce HA, and identify non-conventional overexpression and knock-out strategies to enhance HA flux.To experimentally validate our predictions, we identify an alternate route for enhancement of HA synthesis, originating from the nucleoside inosine, which has the capacity to function in parallel with the traditionally known route from glucose. Adopting this strategy resulted in a 2.8-fold increase in HA yield. The strategies identified and the experimental results show that the cell is capable of involving a larger subset of metabolic pathways in HA production. Apart from being the first report of the use of a nucleoside to improve HA production, our study shows how experimental results enable model refinement. Overall, we point out that well-constructed genome-scale metabolic models could be very potent tools to derive efficient strategies to improve biosynthesis of important high-value products.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3