Author:
Chae Honggoo,Kepple Daniel,Bast Walter G.,Murthy Venkatesh N.,Koulakov Alexei,Albeanu Dinu F.
Abstract
AbstractThe elementary stimulus features encoded by the olfactory system remain poorly understood. We examined the relationship between 1,666 physical-chemical descriptors of odors and the activity of olfactory bulb inputs as well as outputs in awake mice. Glomerular and M/T cell responses were sparse and locally heterogeneous, with only a coarse dependence of glomerular positions on physical-chemical properties. Odor features represented by ensembles of M/T cells were overlapping, but distinct from those represented in glomeruli, consistent with extensive interplay between feedforward and feedback inputs to the bulb. This reformatting was well-described as a rotation in odor space. The descriptors accounted for a small fraction in response variance, and the similarity of odors in physical-chemical space was a poor predictor of similarity in neuronal representations. Our results suggest that commonly used physical-chemical properties are not systematically represented in bulbar activity and encourage further search for better descriptors of odor space.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献